9 research outputs found

    Approximate Treatment of Hermitian Effective Interactions and a Bound on the Error

    Full text link
    The Hermitian effective interaction can be well-approximated by (R+R^dagger)/2 if the eigenvalues of omega^dagger omega are small or state-independent(degenerate), where R is the standard non-Hermitian effective interaction and omega maps the model-space states onto the excluded space. An error bound on this approximation is given.Comment: 13 page

    Two-frequency shell model for hypernuclei and meson-exchange hyperon-nucleon potentials

    Get PDF
    A two-frequency shell model is proposed for investigating the structure of hypernuclei starting with a hyperon-nucleon potential in free space. In a calculation using the folded-diagram method for Λ¹⁶O, the Λ single particle energy is found to have a saturation minimum at an oscillator frequency ħωΛ≈10MeV, for the Λ orbit, which is considerably smaller than ħωN=14MeV for the nucleon orbit. The spin-dependence parameters derived from the Nijmegen NSC89 and NSC97f potentials are similar, but both are rather different from those obtained with the Jülich-B potential. The ΛNN three-body interactions induced by ΛN-ΣN transitions are important for the spin parameters, but relatively unimportant for the low-lying states of Λ¹⁶O.Yiharn Tzeng, S. Y. Tsay Tzeng, T. T. S. Kuo, T.-S.H. Lee, and V. G. D. Stok

    Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures

    No full text
    In this study, some basic oxide additives are introduced into the conventional Ni–Ce0.8Sm0.2O1.9 (SDC) cermet anodes of solid oxide fuel cells (SOFCs) for using methane as the fuel. The effects of incorporating basic oxides on the phase composition, electrical conductivity, microstructure, coking tolerance and catalytic/electrocatalytic activity of the anodes are systematically studied. The basic oxide content and the possible phase reactions in the composite anode have considerable effects on the chemical interactions, electrical conductivities and coking resistances of the cermet anodes. The CaO-modified Ni–SDC anode exhibits higher catalytic performance and/or superior coking tolerance than the Ni–SDC and BaO, SrO, MgO, La2O3-modified Ni–SDC anodes under methane steam reforming conditions. The SOFC with a CaO-modified Ni–SDC anode delivers a much higher power generation than the cells composed of the pristine and BaO-modified Ni–SDC anodes using humidified methane fuel at intermediate temperatures. The improved coking resistance of the CaO-modified Ni–SDC anode results in a more stable voltage in the durability test using methane fuel than the cell with a Ni–SDC anode under the same test conditions. In summary, the CaO-modified Ni–SDC composite is a potential coking-resistant and active anode material for SOFCs that use methane as fuel
    corecore